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Abstract

The purpose of this article is to �nd conditions of existence of n-
periodic orbits for Mobius functions and determine all such orbits (in
the case of their existence).

Part1.
We start with concrete problem.
Problem.(Dutch Mathematical Olympiad,1983 and
Math Excalibur Vol.1,No.4, Problem 16)
Let a; b; c be real numbers , with a; b; c not equal, such that

a+
1

b
= t; b+

1

c
= t; c+

1

a
= t:

Determine all possible value of t and prove that abc+ t = 0:
Solution.
Obvious that a; b; c =2 f0; tg : Also note that t 6= 0;because otherwise
ab = bc = ca = �1 implies a2b2c2 = �1:
Since a; b; c =2 f0; tg then

(1)

8>>>><>>>>:
a+

1

b
= t

b+
1

c
= t

c+
1

a
= t

()

8>>>><>>>>:
b =

1

t� a
c =

1

t� b
a =

1

t� c

()

8<: b = h (a)
c = h (b)
a = h ((c))

;

where h (x) :=
1

t� x for any x 2 R� f0; tg :
We can see that for x 2 fa; b; cg holds x = h (h (h (x))) ; :
that is function h (h (h (x))) have three distinct �xed points.

Since for x 2 fa; b; cg we have h (h (h (x))) = 1

t� 1

t� 1

t� x

=
t2 � tx� 1

t3 � t2x� 2t+ x

then h (h (h (x))) = x () t2 � tx� 1
t3 � t2x� 2t+ x = x ()

t3x� t2x2 � 2tx+ x2 = t2 � tx� 1 ()
�
1� t2

� �
x2 � xt+ 1

�
= 0

implies t2 = 1; because otherwise quadratic equation x2 � xt+ 1 = 0
have three distinct roots a; b and c; that is a contradiction.
Let t2 = 1:
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Then h(x) 6= t for any x 2 R� f0; tg (because h (x) = t ()
1

t� x = t () x =
t2 � 1
t

= 0) and, therefore,

h : R� f0; tg ! R� f0; tg :
Also for any x 2 R� f0; tg we have

h (h (x)) =
1

t� 1

t� x

=
t� x

t2 � tx� 1 =
t� x
�tx and

h (h (h (x))) =
t2 � 1� tx

t3 � t2x� 2t+ x =
�tx

t� x� 2t+ x = x;
that is any x 2 R� f0; tg is �xed point for h � h � h:
Noting that h (x) 6= x and h (h (x)) 6= x for any x 2 R� f0; tg because
h (x) = x () x2� tx+1 = 0 and h (h (x)) = x () tx2�x+ t = 0 ()
x2 � tx+ 1 = 0; where equation x2 � tx+ 1 = 0 have no solutions
in R we can conclude that set of all triples of real numbers (a; b; c)
such that a; b; c are distinct and satis�es (1)
can be parameterized by x 2 R� f0; tg as follows

(a; b; c) =

�
x;

1

t� x;
x� t
tx

�
:

Thus, t2 = 1 and abc = x � 1

t� x �
x� t
tx

= �t () abc+ t = 0:

Part 2. Terminology and notations.
In order to move forward we need to make some preparation.
Let f (x) be function with domain D � R such that f : D �! D:
For any x 2 D we will consider the sequence (xn)n�0 de�ned
recursively as follows:
x0 := x; x1 := f (x0) ;and for any n 2 N if xn 2 D then xn+1 := f (xn) :
Such sequence, in�nite or �nite, we call orbit of x created by f
and denote Of (x) or simpler O (x) :
If xn 2 D for any n 2 N then orbit Of (x) is in�nite, otherwise
orbit is �nite.
Let function f0 be de�ned by f0 (x) = x and for any natural n
we de�ne recursively n-iterated function fn by
fn = f � fn�1; n 2 N; that is f1 (x) := f (x) and f1 (x) := f (fn (x))
for any x 2 D:Thus, xn = fn (x) ; n 2 N:
Using Math Induction we can prove that fn � fm = fn+m
for any n;m 2 N:
Indeed, for any n 2 N; assuming fn � fm = fn+m we obtain
fn+1 � fm = (f � fn) � fm = f � (fn � fm) = f � fn+m = fn+1+m:
By the way we obtain fn � fm = fn+m = fm+n = fm � fn (although,
the operation of the composition is generally non-commutative).
Let x 2 D be number such that xm = x () fm (x) = x for some m 2 N
then point x (which is �xed point of fm ) we also call periodic:
Then orbit Of (x) is periodic orbit and, of course, in�nite.
In that case the smallest natural n such that xn = x we will call
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main period of x and denote �(x):
Also if �(x) = n then correspondent orbit Of (x) and point x we
call n-periodic. (Obvious that any period m is multiples of the
main period n, because if m = kn+ r;where remainder r 6= 0 then
x = fn (x) = fkn+r (x) = (fkn � fr) (x) = fr (x) :Since r < n = �(x) then
it is the contradiction).
If Of (x) is periodic orbit with �(x) = n then x is �xed point
for function fn; that is solution of equation fn (x) = x:
Thus, point x is n-periodic of the following conditions are satis�ed:
1. fk (x) 2 D; k = 1; 2; :::; n� 1;
2. fk (x) 6= x; k = 1; 2; :::; n� 1;
3. fn (x) = x:
Let D1 be subset of all x 2 D for which f generate in�nite orbit.
If D1 is non empty then restriction f on D1 give us mapping
f : D1 �! D1:

Indeed, if x 2 D1 that is O (x) is in�nite then O (f (x)) is subsequence
of O (x) and in�nite as well.
Periodic orbit O (x) with �(x) = n such that x0; x1; :::; xn�1 not equal
we will call strictly periodic.
Applying this terminology to the problem, solved above, we can
formulate the following
Theorem.
Function x 7�! h (x) =

1

t� x : R� ftg �! R have strictly periodic

orbit Oh (x) with main period 3 if and only if t2 = 1:
In that case for any x 2 R� f0; tg orbit Oh (x) is strictly periodic
with �(x) = 3 and xh1 (x)h2 (x) + t = 0:

Part 3. Generalization and modi�cation
Generalization.
Let now n be any natural number and let Tn be set of all real t
such that function h (x) =

1

t� x have periodic orbits of main
period n:
We already know that T3 = f�1; 1g : And we going to �nd Tn
e¤ectively, �nd its explicit representation for all other n; but
�rst we will �nd T1 and T2
1. Let n = 1; then

h (x) = x () x =
1

t� x () xt� x2 = 1 () x2 � xt+ 1 = 0:
Thus we obtain that if h has �xed point x;or by the other
words has orbit with the period 1 then t2 � 4 � 0 () jtj � 2:
Let jtj � 2: For each t such that jtj > 2 we have two �xed
points of h namely, solutions x1; x2 of equation x2 � xt+ 1 = 0
and, respectively, two in�nite orbits
Oh (x) = (x; x; :::; x; :::) ; x 2 fx1; x2g

and one in�nite orbit
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Oh

�
t

2

�
=

�
t

2
;
t

2
; :::;

t

2
; ::

�
for each t 2 f�2; 2g :

Thus T1 = (�1; 2] [ [2;1) :
Remark.
It is not di¢ cult to prove that in case jtj = 2 any x 6= t

2
generate in�nite non-periodic orbit.
For example if t = 2 then we have

Oh (x) =
�
x;

1

2� x;
2� x
3� 2x; :::;

n� (n� 1)x
n+ 1� nx ; :::

�
if x 6= 1 and further we will see that in the case jtj > 2 orbit
Oh (x) is in�nite and non-periodic for any x 6= x1; x2:

2. Let n = 2 and let Oh (x) is periodical orbit with �(x) = 2:
Then
h (h (x)) = x () x =

1

t� 1

t� x

=
t� x

t2 � tx� 1 ()

t2x� tx2 � x = t� x () t(x2 � xt+ 1) = 0 () t = 0;
since x2 � xt+ 1 6= 0:Thus T2 = f0g :
Let t = 0; then any point x 6= 0 generate periodical orbit
O (x) =

�
x;� 1

x
; x;� 1

x
; :::

�
with �(x) = 2.

3. Let now n � 2 be any and let Oh (x) is periodical orbite
with �(x) = n:It is mean that for x 2 R� f0; tg ; which generate
this orbit, holds h1 (x) ; :::; hn�1 (x) 6= x; t and hn (x) = x:
First note that g (y) :=

ty � 1
y

: R� f0; tg �! R� f0; tg is inverse to h;
that is h (g (y)) = y;for any y 6= 0; g (y) 6= t and g (h (x)) = x for any
x 6= t; h (x) 6= 0:
Also note that if Oh (x) be periodic orbit with �(x) = n then numbers
x; h1 (x) ; :::; hn�1 (x) all di¤erent.
Indeed, assume that there are 0 � i < j � n� 1 such that hi (x) = hj (x) :
If i = 0 then x = hj (x) contradict to x 6= hk (x) for any k = 1; :::; n� 1;
if i > 0 then applying g we obtain

hi (x) = hj (x) () g (hi (x)) = g (hj (x)) () hi�1 (x) = hj�1 (x) () ::: () x = hj�1 (x)

that is contradiction as well.
So, further we don�t need to claim that numbers x; h1 (x) ; :::; hn�1 (x)
all di¤erent.
Enough to claim that hk (x) 6= t; k = 1; 2; :::; n� 1:
We will prove that hn (x) ;which de�ned by recurrence
hn (x) = h (hn�1 (x)) ; n 2 N with h0 (x) = x can be represented in the

form hn (x) =
Pn (x; t)

Qn (x; t)
or shortly as

Pn
Qn
:
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Since h0 (x) =
x

1
and h1 (x) =

1

t� x we claim
P0 = x; P1 = 1; Q0 = 1; Q1 = t� x:
Also, since

Pn+1
Qn+1

= h

�
Pn
Qn

�
=

1

t� Pn
Qn

=
Qn

tQn � Pn
we claim

Pn+1 = Qn and Qn+1 = tQn � Pn:
This implies Pn+1 = tPn � Pn�1; n 2 N and Qn = Pn+1:
Note that P2 = t� x and let hn (x) :=

Pn
Pn+1

; n 2 N [ f0g.

Since, h0 (x) = h0 (x) ; h1 (x) = h1 (x) and for any n 2 N [ f0g assuming
hn (x) = hn (x) we obtain hn+1 (x) = h (hn (x)) = h

�
hn (x)

�
= hn+1 (x)

then by Math Induction hn (x) = hn (x) =
Pn
Pn+1

for all n 2 N [ f0g.

Condition hn (x) = x is equivalent to
Pn
Pn+1

= x () Pn � xPn+1 = 0:
Observation of cases n = 2; 3 lead us to assumption

Pn � xPn+1 = Rn (t)
�
x2 � xt+ 1

�
where R (t) is the polynomial of degree n� 1:
In particularly R2 (t) = t; R3 (t) = t2�1; R4 (t) = t3�2t; R5 (t) = t4�3t2+1:
Since Pn+1�xPn+2 = t (Pn � xPn+1)�(Pn�1 � xPn) () Rn+1 (t)

�
x2 � xt+ 1

�
=�

x2 � xt+ 1
�
(tRn (t)�Rn�1 (t)) and x2 � xt+ 1 6= 0 (because n � 2)

we obtain for Rn (t) recurrence
(2) Rn+1 (t) = tRn (t)�Rn�1 (t) ; n � 2
with initial condition R1 (t) = 1; R2 (t) = t:( R0 := 0).
Suppose on a while that jtj < 2 (this restriction on t isn�t in�uence on
de�nition of the polynomial).

Then for ' := cos�1
�
t

2

�
we have t = 2 cos'; t2 � 2 =

2 cos 2' and recurrence (1) can be rewritten in the form
Rn+1 = 2 cos'Rn �Rn�1;

Since Rn = c1 cosn'+ c2 sinn' and from R0 = 0; R1 = 1 follows c1 = 0;

1 = c2 sin' () c2 =
1

sin'
then we obtain

Rn = Rn (2 cos') =
sinn'

sin'
and Rn (t) =

sin

�
n � cos�1

�
t

2

��
sin

�
cos�1

�
t

2

�� ).

Let Tn(x) be Chebishev Polynomial of the First Kind de�ned by
Tn(cos') = cosn';

or, by recurrence Tn+1 � 2xTn + Tn�1 = 0; n 2 N and T0 = 1; T1 = x:
We have (Tn(cos'))�= Tn�(cos') (� sin') = �n sinn' =)

Tn(cos') =
n sinn'

sin'
:

Polynomial Un�1 (x) =
Tn�(x)

n
degree n� 1 we call Chebishev Polynomial
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of the Second Kind.
Un (x) satisfy to recurrence Un+1 = 2xUn � Un�1; n 2 N, (the same as Tn
but with di¤erent initial conditions: U0 = 1; U1 = 2x):

Since Un�1 (t) =
sin
�
n � cos�1 (t)

�
sin (cos�1 (t))

and Un+1 = 2tUn � Un�1; n 2 N;

with U0 = 1; U1 = 2t and Rn+2 (x) = tRn+1 (t)�Rn (t) ; n 2 N with
R1 (t) = 1; R2 (t) = t we can see that

Rn (t) = Un�1

�
t

2

�
:

Now we can �nd all roots of polynomial Rn (t) :

Since
sinn'

sin'
= 0 ()

(
' =

k�

n
sin' 6= 0

����� () ' =
k�

n
and n - k;

we consider n� 1 di¤erent numbers tk = 2 cos
k�

n
; k = 1; 2; :::; n� 1:

Easy to see that Rn (tk) = Rn

�
2 cos

k�

n

�
=
sin k'

sin
k�

n

= 0:

So, t1; t2; :::; tn�1 are n� 1 real solution of equation Rn (t) = 0 and,
because degRn (t) = n� 1; then t1; t2; :::; tn�1 are all roots of Rn (t) :
But we need only such of this roots, which can�t be roots of Rm (t)
with m < n: That is only k coprime with n satisfy to this claim.
(If we assume opposite that Rm (t) = 0 for some m 2 f1; 2; :::; n� 1g
then

Rm (t) = 0 () Um�1

�
t

2

�
= 0 () sin

�
m � cos�1

�
t

2

��
= 0 ()

sin

�
m � cos�1

�
cos

k�

n

��
= 0 () sin

mk�

n
= 0 ()

mk is divisible by n () m is divisible by n ( because gcd (k; n) = 1):

That is we obtain a contradiction with m 2 f1; 2; :::; n� 1g).
Thus we have only � (n) di¤erent t which provide n�periodic orbits,

namely,

Tn =
�
t j t = 2 cos k�

n
; where k = 1; 2; :::; n� 1 and gcd (k; n) = 1

�
:

In particular, if n = 6; then only k = 1; 5 are coprime with 6;hence we

have t = 2 cos
�

6
=
p
3 and t = 2 cos

5�

6
= �

p
3;that is T6 =

�
�
p
3;
p
3
	

Now for each t 2 Tn we will �nd set Dn (t) of all n�periodic x that is x
with � (x) = n:

Let t = 2 cos
k�

n
; where k = 1; 2; :::; n� 1 and gcd (k; n) = 1:

Since Rn (t) = 0;
n�1Q
k=1

Rk (t) 6= 0; Rn+1 (t) = �Rn�1 (t) 6= 0 and
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xm :=
Rm+2 (t)

Rm+1 (t)
;m = 0; 1; 2; :::

then we have

x0 =
R2 (t)

R1 (t)
= t; xn�2 =

Rn (t)

Rn�1 (t)
= 0; xn�1 =

Rn+1 (t)

Rn (t)
= �1:

Since Rp (t) =
sin

�
p � cos�1

�
cos

k�

n

��
sin

�
cos�1

�
cos

k�

n

�� =

sin

�
pk�

n

�
sin

�
k�

n

� for k = 1; 2; :::; n�1

and gcd (k; n) = 1; p 2 N then if n � 4 for m = 1; 2; ::; n� 3

we obtain xm =
Rm+2 (t)

Rm+1 (t)
=

sin

�
(m+ 2) k�

n

�
sin

�
(m+ 1) k�

n

� :
Thus, for t = 2 cos

k�

n
where k = 1; 2; :::; n� 1 and gcd (k; n) = 1 we have

D (t) = R� ft; 0; x1; :::; xn�3g and for any x 2 D (t) correspondent orbit
Oh (x) is n�periodic.
Remark 1.
For each tk = 2 cos

k�

n
; where k = 1; 2; :::; n�1 and k ? n set fe; h1; h2; :::; hn�1g

is a cyclic group with respect to composition as multiplication, where
hn = h0 = e and h

�1
k = hn�k; k = 1; :::; n� 1:

Remark 2.
Since jtkj � 2 then Rn (t) 6= 0 for any n 2 N if jtj > 2 and if at the
same time x isn�t root of equation x2 � xt+ 1 = 0 then equation
hn (x) = x () Rn (t)

�
x2 � xt+ 1

�
= 0 have no solutions for any n 2 N

and, therefore, orbit Oh (x) is in�nite and non-periodic

Modi�cation.
Let�s consider the similar problem with respect to function h (x) =

�1
t� x;

namely, for any n 2 N we will �nd Tn - set of all real t such that function
h (x) have periodical orbits main period n:

If n = 1; then equation x =
�1
t� x () x2 � xt� 1 = 0 have two solutions

x1;2 =
t+

p
t2 + 4

2
for any real t:Thus, T1 = R and we have two orbits

Oh (x1) = (x1; x1; :::) ;Oh (x2) = (x2; x2; :::) :
Let n = 2:Then x =

�1

t� �1
t� x

=
x� t

t2 � tx+ 1 = h2 (x) ()

x� tx2 + t2x = x� t () t
�
x2 � xt� 1

�
= 0 and since

h (x) 6= x () x2 � xt� 1 6= 0 we obtain that

T2 = f0g and for any real x 6= 0; 1 we have Oh (x) =
�
x;
1

x
; x;

1

x
; ::::

�
Let n = 3: Since h2 (x) 6= x implies x2 � xt� 1 = 0 6= 0; t 6= 0 and
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x = h3 (x) =
�1

t� h2 (x)
=

�1

t� x� t
1� tx+ t2

=
1

x� t
1� tx+ t2 � t

()

x =
1� tx+ t2

x� t� t+ t2x� t3 () x2 � 2tx+ t2x2 � xt3 = 1� tx+ t2 ()
x2
�
t2 + 1

�
� xt

�
t2 + 1

�
� (t2+1) = 0 ()

�
t2 + 1

� �
x2 � xt� 1

�
= 0 then

for x such that hi (x) 6= x; i = 1; 2 the equation x = h3 (x) have no
solution in real numbers.
So, function h (x) =

1

x� t have no 3�periodical orbits in R and T3 = ?:

As above we will use representation hn (x) =
Pn (x; t)

Qn (x; t)
or shortly as

Pn
Qn
:

Since h0 (x) =
x

1
and h1 (x) =

�1
t� x we have

P0 = x; P1 = �1; Q0 = 1; Q1 = t� x:
From

Pn+1
Qn+1

=
�1

t� Pn
Qn

=
�Qn

tQn � Pn
follows

Pn+1 = �Qn and Qn+1 = tQn � Pn:
This imply Pn+1 = tPn + Pn�1 and Qn = �Pn+1:
Condition hn (x) = x equivalent to �

Pn
Pn+1

= x () Pn + xPn+1 = 0:

Observation of cases n = 1; 2; 3 lead us to assumption hn (x) = x ()
Pn + xPn+1 = Rn (t)

�
x2 � xt� 1

�
where Rn (t) is the polynomial degree n� 1:
In particular R2 (t) = t; R3 (t) = t2 + 1:
Let there is orbit with main period n > 1:Since x2 � xt+ 1 6= 0
( because otherwise we have periodical orbit with main 1) then
Pn+1 + xPn+2 = t (Pn + xPn+1) + Pn�1 + xPn ()
tRn+1 (t)

�
x2 � xt� 1

�
+Rn (t)

�
x2 � xt+ 1

�
+Rn�1 (t)

�
x2 � xt+ 1

�
()�

x2 � xt� 1
�
(Rn+1 (t)� tRn (t)�Rn�1 (t)) = 0

and we obtain for Rn (x) recurrence
(3) Rn+1 (x) = tRn (t) +Rn�1 (t) with initial condition
R1 (t) = 1; R2 (t) = t:

Therefore, hn (x) = x () Pn + xPn+1 = 0 ()
Rn (t)

�
x2 � xt� 1

�
= 0 () Rn (t) = 0 since x2 � xt+ 1 6= 0:

We will prove, that for any n > 2 equation Rn (t) = 0 have no
nonzero solutions.
(case t = 0 ( there is 2-periodical orbit) must be excluded).
Because situation is di¤erent for n odd and n even we will
consider separately polynomials R2n+1 (t) and polynomials

�R2n (t) =
R2n (t)

t
:

Since Rn+2 = tRn+1 +Rn = t (tRn +Rn�1) +Rn =�
t2 + 1

�
Rn + tRn�1 and tRn�1 = Rn �Rn�2 we obtain

Rn+2 =
�
t2 + 2

�
Rn � Rn�2:

Thus we consider two sequences:
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�R2n (t) ; n 2 N[f0g, which satisfy �R2n+2 =
�
t2 + 2

�
�R2n � �R2n�2; n � 1

with �R0 = 0; �R2 = 1 and R2n�1 (t) ; n 2 N;which satisfy
R2n+3 =

�
t2 + 2

�
R2n+1 �R2n�1; n � 1 and R1 = 1; R3 = t2 + 1:

Lemma.
For all n 2 N holds:
i. R2n+1 > R2n�1 > 0;
ii. �R2n+2 > �R2n > 0:
Proof.(by Math. Induction)
1.Base of induction.
Let n = 1;then R3 = t2 + 1 > 1 = R1 > 0 and �R4 = t2 + 2 > 1 = �R2 > 0:
2.Step of induction.
i. Let R2n+1 > R2n�1 > 0; then
R2n+3 �R2n+1 =

�
t2 + 1

�
R2n+1 �R2n�1 > R2n+1 �R2n�1 > 0;

so, R2n+3 > R2n+1 > 0;
ii. Let �R2n+2 > �R2n > 0;then
�R2n+4 � �R2n+2 =

�
t2 + 1

�
�R2n+2 � �R2n > �R2n+2 � �R2n > 0;

so, �R2n+4 > �R2n+2 > 0:
Alternative proof.
Since characteristic equation x2 � tx� 1 = 0 for recurrence (3)

have roots x1 =
t�

p
t2 + 4

2
< 0 , x2 =

t+
p
t2 + 4

2
with Vieta�s

properties x1 + x2 = t and x1x2 = �1
then Rn = c1xn1 + c2x

n
2 ;where c1; c2 can be determined from

initial conditions R0 = 0; R1 = 0:

Since c1 = �
1p
t2 + 4

; c2 = �
1p
t2 + 4

then, Rn =
xn2 � xn1
x2 � x1

For odd n we have Rn =
xn2 � xn1
x2 � x1

=
xn2 + (�x1)

n

x2 � x1
> 0:

For n = 2m we have

R2m =
x2m2 � x2m1
x2 � x1

= (x2 + x1)
�
x2m�22 + x2m�41 x22 + :::+ x

2m�2
1

�
=

t
�
x2m�22 + x2m�41 x22 + :::+ x

2m�2
1

�
:

Thus �R2m =
R2m
t

= x2m�22 + x2m�41 x22 + :::+ x
2m�2
1 > 0:

Corollary.
From lemma immediately follows that Rn (t) have no nonzero roots.

So function h (x) =
�1
t� x have no n�periodical orbits with n > 2:

Part 4 More generalization
Now we will show that the general problem about periodicity

of orbits for any Möbius Function g (x) =
ax+ b

cx+ d
(where a; b; c; d

satisfy to ad� bc 6= 0 and c 6= 0 ) can be reduced to the considered
above two cases.
First note, that for any linear function l (x) = px+ q; p 6= 0 orbits
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of element x 2 R for Mobius Functions g and f = l�1 � g � l
have the same periodicity.
Indeed, we have
h2 =

�
l�1 � g � l

�
�
�
l�1 � g � l

�
=
�
l�1 � g

�
�
�
l � l�1

�
� (g � l) =�

l�1 � g
�
� (g � l) = l�1 � (g � g) � l = l�1 � g2 � l

and by Math Induction from supposition
hn = l

�1 � gn � l obtain hn+1 = h � hn =
�
l�1 � g � l

�
�
�
l�1 � gn � l

�
=

l�1 � (g � gn) � l = l�1 � gn+1 � l :
Since fn (x) = x ()

�
l�1 � gn � l

�
(x) = x () (gn � l) (x) = l (x) ()

gn (l (x)) = l (x) then orbit Of (x) is n-periodic i¤ Og (l (x)) is n-periodic.

Lemma 2.
For any Möbius Function g (x) =

ax+ b

cx+ d
with a; b; c; d 2 R and

ad� bc 6= 0 , c 6= 0 there is linear function l (x) = px+ q;such

that h (x) =
�
l�1 � g � l

�
(x) =

sign(ad� bc)
t� x :

Proof.
Let y =

ax+ b

cx+ d
. We will �nd p; q such that

py + q =
a (px+ q) + b

c (px+ q) + d
() y =

�1
t� x:

py + q =
a (px+ q) + b

c (px+ q) + d
() py =

a (px+ q) + b

c (px+ q) + d
� q ()

py =
apx+ aq + b� cpqx� cq2 � dq

cpx+ cq + d
()

py =
px (a� cq) + b+ q (a� cq � d)

cpx+ cq + d
:

For q =
a

c
we get y =

ad� bc
(pc)

2

�a+ d
pc

� x
and by setting

p :=

p
jad� bcj
c

and t := � a+ dp
jad� bcj

we obtain y =
sign(ad� bc)

t� x :

Corollary.
i. If ad� bc > 0 then g have n�periodic orbit i¤
� a+ dp

ad� bc
= 2 cos

k�

n
; where k = 1; 2; :::; n� 1 and k is coprime with n;

ii. If ad� bc < 0 then g always have 1�periodic orbit; 2�periodic
orbit i¤ a+ d = 0; and never m�periodical orbit for m > 2:

Part 5. Addition
In conclusion, we will consider a problem essentially similar
to those considered above, the solution of which demonstrates
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a di¤erent approach.
Problem.
Let n � 2 be an integer.
Find all real numbers a such that there exist real numbers
x1; ::::; xn satisfying
x1(1� x2) = x2(1� x3) = ::::: = xn�1(1� xn) = xn(1� x1) = a.
Solution.
Let A be set all real numbers a such that system of equations

(4)
�
xk(1� xk+1) = a; k = 1; 2; ::; n� 1

xn(1� x1) = a
is solvable with respect to x1; ::::; xn 2 R:
Noting that for a = 0 the system (4) has obvious solution
x1 = x2 = ::: = xn = 0 we assume further that a 6= 0:
That immediately implies that xi 6= 0; i = 1; 2; :::; n and
we can rewrite the system as follows:

(5)
�
xk+1 = h (xk) ; k = 1; 2; ::; n� 1

x1 = h (xn)
; where

h (x) := 1� a

x
=
x� a
x

:

Let h1 (x) := h (x) ; hn+1 (x) = h (hn (x)) ; n 2 N and Hn be matrix of
coe¢ cients for Mobius function hn (x) ;that is

hn (x) =
anx+ bn
cnx+ dn

and Hn =
�
an bn
cn dn

�
; n 2 N:

Also let h0 (x) := x: Then H0 =
�
1 0
0 1

�
; H1 = H =

�
1 �a
1 0

�
and

Hn+1 = H �Hn ()
�
an+1 bn+1
cn+1 dn+1

�
=

�
1 �a
1 0

�
�
�
an bn
cn dn

�
=

�
an � acn bn � adn
an bn

�
()

8>><>>:
an+1 = an � acn
bn+1 = bn � adn
cn+1 = an
dn+1 = bn

()

8>><>>:
an+1 = an � aan�1
bn+1 = bn � abn�1

cn+1 = an
dn+1 = bn

; n 2 N

and a0 = 1; a1 = 1; b0 = 0; b1 = �a:
Since (an) and (bn) satis�es to the same recurrence and b2 = �a
then bn = �aan�1; n 2 N:

Thus; Hn =
�
an �aan�1
an�1 �aan�2

�
; n � 2 and hn (x) =

anx� aan�1
an�1x� aan�2

; n � 2:

Coming back to the system (5) we can see that
xk = hk (x1) ; k = 1; 2; ::; n� 1 and x1 = hn (x1) ;

that is x1 is solution of equation hn (x) = x:ThusAn = fa j hn (x) = x; x 2 Rg :
Since hn (x) = x () anx� aan�1

an�1x� aan�2
= x ()

anx� aan�1 = an�1x2 � aan�2x ()
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(6) an�1x
2 � x (an + aan�2) + aan�1 = 0;

where an is polynomial of a de�ned recursively by
an+1 = an � aan�1; n 2 N , a0 = 1; a1 = 1
and quadratic equation (6) is solvable in real x i¤ its discriminant
Dn := (an + aan�2)

2 � 4aa2n�1 = a2a2n�2 + 2aanan�2 � 4aa2n�1 + a2n =
a2a2n�2 � 4aa2n�1 + 2aan�2 (an�1 � aan�2) + (an�1 � aan�2)

2
=

a2n�1 (1� 4a) = a2n�1 (1� 4a) is non negative then
An =

�
a j a2n�1 (1� 4a) � 0

	
= (�1; 1=4] [ fa j an�1 = 0g ; n � 2:

For example,
a2 = 1� a; a3 = 1� 2a; ; a4 = a2 � 3a+ 1; a5 = a2 � 3a+ 1� a (1� 2a) =
3a2 � 4a+ 1 and A2 = (�1; 1=4]; A3 = (�1; 1=4] [ f1g ;

A4 = (�1; 1=4] [ f1=2g ; A5 = (�1; 1=4] [
(
3�

p
5

2
;
3 +

p
5

2

)
:

Note that for any a � 1

4
system (1) solvable in R:

Indeed, since

h (x) = x () x2 � x+ a = 0 () x 2
�
1�

p
1� 4a
2

;
1 +

p
1� 4a
2

�
then (x1; x2; ::::; xn) = (x; x; x; :::; x) for any such x
is solution of (1) because for x1 = x we have
hk (x1) = hk (x) = x; k = 1; 2; :::; n:
Therefore, to complete the solution of the problem remains �nd
all solution of equation an�1 (a) = 0 in real a > 1=4 for any n � 2.
Since a > 1=4 () 1

2
p
a
< 1 then denoting

� := arccos
1

2
p
a
and bn :=

an

(
p
a)
n we obtain

an+1 = an � aan�1 ()
an+1

(
p
a)
n+1 �

1p
a
� an

(
p
a)
n +

an�1

(
p
a)
n�1 = 0 ()

(4) bn+1 � 2 cos� � bn + bn�1 = 0; n 2 N:
Since bn = c1 cosn�+ c2 sinn� and b0 = 1; b1 =

1p
a
= 2 cos�

we obtain c1 = 1; c2 = cot� and, therefore,

bn = cosn�+ cot� sinn� =
sin (n+ 1)�

sin�
; n 2 N:

Thus, for any n � 2 we have

an =
an=2 sin (n+ 1)�

sin�
and an = 0 ()

8><>:
sin (n+ 1)� = 0

sin� 6= 0
a =

1

4 cos2 �

()

8>>>>><>>>>>:
� =

1

4 cos2
k�

n+ 1
k = 1; 2; :::; n

a =
1

4 cos2 �

() a =
1

4 cos2
k�

n+ 1

; k = 1; 2; :::;

�
n+ 1

2

�
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(since cos2
k�

n+ 1
=
(n+ 1� k)�

n+ 1
; k = 1; 2; ::; n).

Thus, for any n � 2 equation hn (x) = x solvable in R I¤

a 2 An = (�1; 1=4] [

8><>: 1

4 cos2
k�

n

j k = 1; 2; :::;
jn
2

k9>=>; :
Remark.
Of course, this problem also can be solved by following the
instructions that represented in Generalization 3 and realize
this opportunity we we will leave to readers.
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